Filtros : "Springer" "GRU016" Limpar

Filtros



Refine with date range


  • Source: Machine learning for advanced functional materials. Unidade: IFSC

    Subjects: APRENDIZADO COMPUTACIONAL, ELETROQUÍMICA, SENSOR, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JOSHI, Nirav Kumar Jitendrabhai e KUSHVAHA, Vinod e MADHUSHRI, Priyanka. Machine learning for advanced functional materials. [Prefácio]. Machine learning for advanced functional materials. Singapore: Springer. Disponível em: https://doi.org/10.1007/978-981-99-0393-1. Acesso em: 17 maio 2024. , 2023
    • APA

      Joshi, N. K. J., Kushvaha, V., & Madhushri, P. (2023). Machine learning for advanced functional materials. [Prefácio]. Machine learning for advanced functional materials. Singapore: Springer. doi:10.1007/978-981-99-0393-1
    • NLM

      Joshi NKJ, Kushvaha V, Madhushri P. Machine learning for advanced functional materials. [Prefácio] [Internet]. Machine learning for advanced functional materials. 2023 ;[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
    • Vancouver

      Joshi NKJ, Kushvaha V, Madhushri P. Machine learning for advanced functional materials. [Prefácio] [Internet]. Machine learning for advanced functional materials. 2023 ;[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
  • Source: Advances in Glass Research. Unidade: IFSC

    Subjects: FOTÔNICA, VIDRO CERÂMICO, PROPRIEDADES DOS MATERIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HUAMAN, Jose Luis Clabel et al. Overall aspects of glasses for photonic devices. Advances in Glass Research. Tradução . Cham: Springer, 2023. p. 403 . Disponível em: https://doi.org/10.1007/978-3-031-20266-7_1. Acesso em: 17 maio 2024.
    • APA

      Huaman, J. L. C., Calderón, G. L., Pinto, I. C., Falci, R. F., Rivera, V. A. G., Messaddeq, Y., & Marega Júnior, E. (2023). Overall aspects of glasses for photonic devices. In Advances in Glass Research (p. 403 ). Cham: Springer. doi:10.1007/978-3-031-20266-7_1
    • NLM

      Huaman JLC, Calderón GL, Pinto IC, Falci RF, Rivera VAG, Messaddeq Y, Marega Júnior E. Overall aspects of glasses for photonic devices [Internet]. In: Advances in Glass Research. Cham: Springer; 2023. p. 403 .[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-3-031-20266-7_1
    • Vancouver

      Huaman JLC, Calderón GL, Pinto IC, Falci RF, Rivera VAG, Messaddeq Y, Marega Júnior E. Overall aspects of glasses for photonic devices [Internet]. In: Advances in Glass Research. Cham: Springer; 2023. p. 403 .[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-3-031-20266-7_1
  • Unidade: IFSC

    Subjects: APRENDIZADO COMPUTACIONAL, ELETROQUÍMICA, SENSOR, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Machine learning for advanced functional materials. . Singapore: Springer. Disponível em: https://doi.org/10.1007/978-981-99-0393-1. Acesso em: 17 maio 2024. , 2023
    • APA

      Machine learning for advanced functional materials. (2023). Machine learning for advanced functional materials. Singapore: Springer. doi:10.1007/978-981-99-0393-1
    • NLM

      Machine learning for advanced functional materials [Internet]. 2023 ;[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
    • Vancouver

      Machine learning for advanced functional materials [Internet]. 2023 ;[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-981-99-0393-1
  • Source: Machine learning for advanced functional materials. Unidades: IFSC, IQSC

    Subjects: ELETROQUÍMICA, APRENDIZADO COMPUTACIONAL, SENSOR, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IBÁÑEZ-REDÍN, Glenda Gisela et al. A machine learning approach in wearable technologies. Machine learning for advanced functional materials. Tradução . Singapore: Springer, 2023. . Disponível em: https://doi.org/10.1007/978-981-99-0393-1_3. Acesso em: 17 maio 2024.
    • APA

      Ibáñez-Redín, G. G., Duarte, O. S., Cagnani, G. R., & Oliveira Junior, O. N. de. (2023). A machine learning approach in wearable technologies. In Machine learning for advanced functional materials. Singapore: Springer. doi:10.1007/978-981-99-0393-1_3
    • NLM

      Ibáñez-Redín GG, Duarte OS, Cagnani GR, Oliveira Junior ON de. A machine learning approach in wearable technologies [Internet]. In: Machine learning for advanced functional materials. Singapore: Springer; 2023. [citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-981-99-0393-1_3
    • Vancouver

      Ibáñez-Redín GG, Duarte OS, Cagnani GR, Oliveira Junior ON de. A machine learning approach in wearable technologies [Internet]. In: Machine learning for advanced functional materials. Singapore: Springer; 2023. [citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-981-99-0393-1_3
  • Source: Handbook of animal models and its uses in cancer research. Unidade: IFSC

    Subjects: PELE, NEOPLASIAS CUTÂNEAS, TERAPIA FOTODINÂMICA, ÓPTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REQUENA, Michelle Barreto e AZEVEDO, Mirian Denise Stringasci de e BUZZÁ, Hilde Harb. Optical techniques for treatment and tissue evaluation using skin models for preclinical studies. Handbook of animal models and its uses in cancer research. Tradução . Singapore: Springer, 2023. . Disponível em: https://doi.org/10.1007/978-981-19-3824-5_29. Acesso em: 17 maio 2024.
    • APA

      Requena, M. B., Azevedo, M. D. S. de, & Buzzá, H. H. (2023). Optical techniques for treatment and tissue evaluation using skin models for preclinical studies. In Handbook of animal models and its uses in cancer research. Singapore: Springer. doi:10.1007/978-981-19-3824-5_29
    • NLM

      Requena MB, Azevedo MDS de, Buzzá HH. Optical techniques for treatment and tissue evaluation using skin models for preclinical studies [Internet]. In: Handbook of animal models and its uses in cancer research. Singapore: Springer; 2023. [citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-981-19-3824-5_29
    • Vancouver

      Requena MB, Azevedo MDS de, Buzzá HH. Optical techniques for treatment and tissue evaluation using skin models for preclinical studies [Internet]. In: Handbook of animal models and its uses in cancer research. Singapore: Springer; 2023. [citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-981-19-3824-5_29
  • Source: Machine learning for advanced functional materials. Unidades: IFSC, IQSC

    Subjects: ELETROQUÍMICA, SENSORES QUÍMICOS, SENSORES ÓPTICOS, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATERON, Elsa Maria et al. Recent advances in machine learning for electrochemical, optical, and gas sensors. Machine learning for advanced functional materials. Tradução . Singapore: Springer, 2023. . Disponível em: https://doi.org/10.1007/978-981-99-0393-1_6. Acesso em: 17 maio 2024.
    • APA

      Materon, E. M., Silva, F. S. R. da, Ribas, L. C., Joshi, N. K. J., Bruno, O. M., Carrilho, E., & Oliveira Junior, O. N. de. (2023). Recent advances in machine learning for electrochemical, optical, and gas sensors. In Machine learning for advanced functional materials. Singapore: Springer. doi:10.1007/978-981-99-0393-1_6
    • NLM

      Materon EM, Silva FSR da, Ribas LC, Joshi NKJ, Bruno OM, Carrilho E, Oliveira Junior ON de. Recent advances in machine learning for electrochemical, optical, and gas sensors [Internet]. In: Machine learning for advanced functional materials. Singapore: Springer; 2023. [citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-981-99-0393-1_6
    • Vancouver

      Materon EM, Silva FSR da, Ribas LC, Joshi NKJ, Bruno OM, Carrilho E, Oliveira Junior ON de. Recent advances in machine learning for electrochemical, optical, and gas sensors [Internet]. In: Machine learning for advanced functional materials. Singapore: Springer; 2023. [citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-981-99-0393-1_6
  • Source: Advances in bioelectrochemistry. Unidade: IFSC

    Subjects: SENSORES BIOMÉDICOS, ELETRODO, CÉLULAS A COMBUSTÍVEL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Andressa Ribeiro. Protein engineering for designing efficient bioelectrodes. Advances in bioelectrochemistry. Tradução . Cham: Springer, 2022. v. 4. . Disponível em: https://doi.org/10.1007/978-3-030-99662-8_1. Acesso em: 17 maio 2024.
    • APA

      Pereira, A. R. (2022). Protein engineering for designing efficient bioelectrodes. In Advances in bioelectrochemistry (Vol. 4). Cham: Springer. doi:10.1007/978-3-030-99662-8_1
    • NLM

      Pereira AR. Protein engineering for designing efficient bioelectrodes [Internet]. In: Advances in bioelectrochemistry. Cham: Springer; 2022. [citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-3-030-99662-8_1
    • Vancouver

      Pereira AR. Protein engineering for designing efficient bioelectrodes [Internet]. In: Advances in bioelectrochemistry. Cham: Springer; 2022. [citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-3-030-99662-8_1
  • Source: Molecular architectonics and nanoarchitectonics. Unidades: IQSC, IFSC

    Subjects: SENSOR, FILMES FINOS, MATERIAIS NANOESTRUTURADOS, POLÍMEROS (MATERIAIS), BIOMATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Andressa Ribeiro et al. Combining polymers, nanomaterials and biomolecules: nanostructured films with functional properties and applications. Molecular architectonics and nanoarchitectonics. Tradução . Singapore: Springer, 2022. p. 548 . Disponível em: https://doi.org/10.1007/978-981-16-4189-3_19. Acesso em: 17 maio 2024.
    • APA

      Pereira, A. R., Melo, A. F. A. de A., Crespilho, F. N., & Oliveira Junior, O. N. de. (2022). Combining polymers, nanomaterials and biomolecules: nanostructured films with functional properties and applications. In Molecular architectonics and nanoarchitectonics (p. 548 ). Singapore: Springer. doi:10.1007/978-981-16-4189-3_19
    • NLM

      Pereira AR, Melo AFA de A, Crespilho FN, Oliveira Junior ON de. Combining polymers, nanomaterials and biomolecules: nanostructured films with functional properties and applications [Internet]. In: Molecular architectonics and nanoarchitectonics. Singapore: Springer; 2022. p. 548 .[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-981-16-4189-3_19
    • Vancouver

      Pereira AR, Melo AFA de A, Crespilho FN, Oliveira Junior ON de. Combining polymers, nanomaterials and biomolecules: nanostructured films with functional properties and applications [Internet]. In: Molecular architectonics and nanoarchitectonics. Singapore: Springer; 2022. p. 548 .[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-981-16-4189-3_19
  • Source: Research topics in bioactivity, environment and energy: experimental and theoretical tools. Unidade: IFSC

    Subjects: HIDROXIAPATITA, LUMINESCÊNCIA, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHADO, Thales Rafael et al. Advances in the synthesis and applications of self-activated fluorescent nano- and micro-hydroxyapatite. Research topics in bioactivity, environment and energy: experimental and theoretical tools. Tradução . Cham: Springer, 2022. p. 734 . Disponível em: https://doi.org/10.1007/978-3-031-07622-0_5. Acesso em: 17 maio 2024.
    • APA

      Machado, T. R., Silva, J. S. da, Cordoncillo, E., Beltrán-Mir, H., Andrés, J., Zucolotto, V., & Longo, E. (2022). Advances in the synthesis and applications of self-activated fluorescent nano- and micro-hydroxyapatite. In Research topics in bioactivity, environment and energy: experimental and theoretical tools (p. 734 ). Cham: Springer. doi:10.1007/978-3-031-07622-0_5
    • NLM

      Machado TR, Silva JS da, Cordoncillo E, Beltrán-Mir H, Andrés J, Zucolotto V, Longo E. Advances in the synthesis and applications of self-activated fluorescent nano- and micro-hydroxyapatite [Internet]. In: Research topics in bioactivity, environment and energy: experimental and theoretical tools. Cham: Springer; 2022. p. 734 .[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-3-031-07622-0_5
    • Vancouver

      Machado TR, Silva JS da, Cordoncillo E, Beltrán-Mir H, Andrés J, Zucolotto V, Longo E. Advances in the synthesis and applications of self-activated fluorescent nano- and micro-hydroxyapatite [Internet]. In: Research topics in bioactivity, environment and energy: experimental and theoretical tools. Cham: Springer; 2022. p. 734 .[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-3-031-07622-0_5
  • Source: Handbook of oxidative stress in cancer: therapeutic aspects. Unidade: IFSC

    Subjects: PELE, NEOPLASIAS CUTÂNEAS, TERAPIA FOTODINÂMICA, CARCINOMA BASOCELULAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REQUENA, Michelle Barreto e SÁLVIO, Ana Gabriela e BAGNATO, Vanderlei Salvador. Advances in photodynamic protocols for nonmelanoma skin cancer. Handbook of oxidative stress in cancer: therapeutic aspects. Tradução . Singapore: Springer, 2022. . Disponível em: https://doi.org/10.1007/978-981-16-5422-0_198. Acesso em: 17 maio 2024.
    • APA

      Requena, M. B., Sálvio, A. G., & Bagnato, V. S. (2022). Advances in photodynamic protocols for nonmelanoma skin cancer. In Handbook of oxidative stress in cancer: therapeutic aspects. Singapore: Springer. doi:10.1007/978-981-16-5422-0_198
    • NLM

      Requena MB, Sálvio AG, Bagnato VS. Advances in photodynamic protocols for nonmelanoma skin cancer [Internet]. In: Handbook of oxidative stress in cancer: therapeutic aspects. Singapore: Springer; 2022. [citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-981-16-5422-0_198
    • Vancouver

      Requena MB, Sálvio AG, Bagnato VS. Advances in photodynamic protocols for nonmelanoma skin cancer [Internet]. In: Handbook of oxidative stress in cancer: therapeutic aspects. Singapore: Springer; 2022. [citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-981-16-5422-0_198
  • Source: High Performance Computing in Science and Engineering '20: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2020. Unidade: IFSC

    Subjects: CONDENSADO DE BOSE-EINSTEIN, EQUAÇÃO DE SCHRODINGER, FÍSICA ATÔMICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LODE, Axel U. J. et al. MCTDH-X: the multiconfigurational time-dependent hartree method for indistinguishable particles high-performance computation project. High Performance Computing in Science and Engineering '20: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2020. Tradução . Cham: Springer, 2021. p. 594 . Disponível em: https://doi.org/10.1007/978-3-030-80602-6_2. Acesso em: 17 maio 2024.
    • APA

      Lode, A. U. J., Alon, O. E., Bastarrachea-Magnani, M. A., Bhowmik, A., Buchleitner, A., Cederbaum, L. S., et al. (2021). MCTDH-X: the multiconfigurational time-dependent hartree method for indistinguishable particles high-performance computation project. In High Performance Computing in Science and Engineering '20: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2020 (p. 594 ). Cham: Springer. doi:10.1007/978-3-030-80602-6_2
    • NLM

      Lode AUJ, Alon OE, Bastarrachea-Magnani MA, Bhowmik A, Buchleitner A, Cederbaum LS, Chitra R, Fasshauer E, Parny L de F de, Haldar SK, Lévêque C, Lin R, Madsen LB, Molignini P, Papariello L, Schäfer F, Streltsov AI, Tsatsos M, Weiner SE. MCTDH-X: the multiconfigurational time-dependent hartree method for indistinguishable particles high-performance computation project [Internet]. In: High Performance Computing in Science and Engineering '20: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2020. Cham: Springer; 2021. p. 594 .[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-3-030-80602-6_2
    • Vancouver

      Lode AUJ, Alon OE, Bastarrachea-Magnani MA, Bhowmik A, Buchleitner A, Cederbaum LS, Chitra R, Fasshauer E, Parny L de F de, Haldar SK, Lévêque C, Lin R, Madsen LB, Molignini P, Papariello L, Schäfer F, Streltsov AI, Tsatsos M, Weiner SE. MCTDH-X: the multiconfigurational time-dependent hartree method for indistinguishable particles high-performance computation project [Internet]. In: High Performance Computing in Science and Engineering '20: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2020. Cham: Springer; 2021. p. 594 .[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-3-030-80602-6_2
  • Source: Nanocarriers for drug delivery. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, MEDICINA (APLICAÇÕES), BIOMEDICINA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LINS, Paula Maria Pincela et al. Inorganic nanoparticles for biomedical applications. Nanocarriers for drug delivery. Tradução . Cham: Springer, 2021. p. 347 . Disponível em: https://doi.org/10.1007/978-3-030-63389-9_3. Acesso em: 17 maio 2024.
    • APA

      Lins, P. M. P., Ribovski, L., Sampaio, I., Santos, O. A., Zucolotto, V., & Bernardi, J. C. (2021). Inorganic nanoparticles for biomedical applications. In Nanocarriers for drug delivery (p. 347 ). Cham: Springer. doi:10.1007/978-3-030-63389-9_3
    • NLM

      Lins PMP, Ribovski L, Sampaio I, Santos OA, Zucolotto V, Bernardi JC. Inorganic nanoparticles for biomedical applications [Internet]. In: Nanocarriers for drug delivery. Cham: Springer; 2021. p. 347 .[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-3-030-63389-9_3
    • Vancouver

      Lins PMP, Ribovski L, Sampaio I, Santos OA, Zucolotto V, Bernardi JC. Inorganic nanoparticles for biomedical applications [Internet]. In: Nanocarriers for drug delivery. Cham: Springer; 2021. p. 347 .[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-3-030-63389-9_3
  • Source: Metal-oxides and metal sulfides for batteries, fuel cells, solar cells, photocatalysis and health sensors. Unidade: IFSC

    Subjects: SENSORES BIOMÉDICOS, MONITORIZAÇÃO FISIOLÓGICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIYAKAZI, Celina M. et al. Metal oxides and sulfide-based biosensor for monitoring and health control. Metal-oxides and metal sulfides for batteries, fuel cells, solar cells, photocatalysis and health sensors. Tradução . Cham: Springer, 2021. p. 340 . Disponível em: https://doi.org/10.1007/978-3-030-63791-0_6. Acesso em: 17 maio 2024.
    • APA

      Miyakazi, C. M., Joshi, N. K. J., Shimizu, F. M., & Oliveira Junior, O. N. de. (2021). Metal oxides and sulfide-based biosensor for monitoring and health control. In Metal-oxides and metal sulfides for batteries, fuel cells, solar cells, photocatalysis and health sensors (p. 340 ). Cham: Springer. doi:10.1007/978-3-030-63791-0_6
    • NLM

      Miyakazi CM, Joshi NKJ, Shimizu FM, Oliveira Junior ON de. Metal oxides and sulfide-based biosensor for monitoring and health control [Internet]. In: Metal-oxides and metal sulfides for batteries, fuel cells, solar cells, photocatalysis and health sensors. Cham: Springer; 2021. p. 340 .[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-3-030-63791-0_6
    • Vancouver

      Miyakazi CM, Joshi NKJ, Shimizu FM, Oliveira Junior ON de. Metal oxides and sulfide-based biosensor for monitoring and health control [Internet]. In: Metal-oxides and metal sulfides for batteries, fuel cells, solar cells, photocatalysis and health sensors. Cham: Springer; 2021. p. 340 .[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-3-030-63791-0_6
  • Source: High Performance Computing in Science and Engineering '19: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2019. Unidades: IF, IFSC

    Subjects: CONDENSADO DE BOSE-EINSTEIN, EQUAÇÃO DE SCHRODINGER, FÍSICA ATÔMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LODE, A. U. J. et al. Crystallization, fermionization, and cavity-induced phase transitions of Bose-Einstein condensates. High Performance Computing in Science and Engineering '19: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2019. Tradução . Cham: Springer, 2021. p. 599 . Disponível em: https://doi.org/10.1007/978-3-030-66792-4_5. Acesso em: 17 maio 2024.
    • APA

      Lode, A. U. J., Alon, O. E., Cederbaum, L. E., Chakrabarti, B., Chatterjee, B., Chitra, R., et al. (2021). Crystallization, fermionization, and cavity-induced phase transitions of Bose-Einstein condensates. In High Performance Computing in Science and Engineering '19: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2019 (p. 599 ). Cham: Springer. doi:10.1007/978-3-030-66792-4_5
    • NLM

      Lode AUJ, Alon OE, Cederbaum LE, Chakrabarti B, Chatterjee B, Chitra R, Gammal A, Haldar SK, Lekava ML, Lévêque C, Lin R, Molignini P, Papariello L, Tsatsos M. Crystallization, fermionization, and cavity-induced phase transitions of Bose-Einstein condensates [Internet]. In: High Performance Computing in Science and Engineering '19: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2019. Cham: Springer; 2021. p. 599 .[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-3-030-66792-4_5
    • Vancouver

      Lode AUJ, Alon OE, Cederbaum LE, Chakrabarti B, Chatterjee B, Chitra R, Gammal A, Haldar SK, Lekava ML, Lévêque C, Lin R, Molignini P, Papariello L, Tsatsos M. Crystallization, fermionization, and cavity-induced phase transitions of Bose-Einstein condensates [Internet]. In: High Performance Computing in Science and Engineering '19: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2019. Cham: Springer; 2021. p. 599 .[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-3-030-66792-4_5
  • Source: Lasers in oral and maxillofacial surgery. Unidade: IFSC

    Subjects: TERAPIA FOTODINÂMICA, NEOPLASIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GERALDE, Mariana Carreira et al. Photodynamic reactions for the treatment of oral-facial lesions and microbiological control. Lasers in oral and maxillofacial surgery. Tradução . Cham: Springer, 2020. . Disponível em: https://doi.org/10.1007/978-3-030-29604-9_5. Acesso em: 17 maio 2024.
    • APA

      Geralde, M. C., Requena, M. B., Faria, C. M. G., Kurachi, C., Pratavieira, S., & Bagnato, V. S. (2020). Photodynamic reactions for the treatment of oral-facial lesions and microbiological control. In Lasers in oral and maxillofacial surgery. Cham: Springer. doi:10.1007/978-3-030-29604-9_5
    • NLM

      Geralde MC, Requena MB, Faria CMG, Kurachi C, Pratavieira S, Bagnato VS. Photodynamic reactions for the treatment of oral-facial lesions and microbiological control [Internet]. In: Lasers in oral and maxillofacial surgery. Cham: Springer; 2020. [citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-3-030-29604-9_5
    • Vancouver

      Geralde MC, Requena MB, Faria CMG, Kurachi C, Pratavieira S, Bagnato VS. Photodynamic reactions for the treatment of oral-facial lesions and microbiological control [Internet]. In: Lasers in oral and maxillofacial surgery. Cham: Springer; 2020. [citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-3-030-29604-9_5
  • Source: Functional nanomaterials: advances in gas sensing technologies. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, SENSOR, RADIAÇÃO ULTRAVIOLETA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JOSHI, Nirav et al. Recent advances on UV-enhanced oxide nanostructures gas sensors. Functional nanomaterials: advances in gas sensing technologies. Tradução . Singapore: Springer, 2020. p. 462 . Disponível em: https://doi.org/10.1007/978-981-15-4810-9_6. Acesso em: 17 maio 2024.
    • APA

      Joshi, N., Tomer, V. K., Malik, R., & Nie, J. (2020). Recent advances on UV-enhanced oxide nanostructures gas sensors. In Functional nanomaterials: advances in gas sensing technologies (p. 462 ). Singapore: Springer. doi:10.1007/978-981-15-4810-9_6
    • NLM

      Joshi N, Tomer VK, Malik R, Nie J. Recent advances on UV-enhanced oxide nanostructures gas sensors [Internet]. In: Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer; 2020. p. 462 .[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-981-15-4810-9_6
    • Vancouver

      Joshi N, Tomer VK, Malik R, Nie J. Recent advances on UV-enhanced oxide nanostructures gas sensors [Internet]. In: Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer; 2020. p. 462 .[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-981-15-4810-9_6
  • Source: Essentials of cancer genomic, computational approaches and precision medicine. Unidade: IFSC

    Subjects: SENSORES BIOMÉDICOS, NEOPLASIAS, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIBI, Naheed e AWAN, Iram Taj e AWAN, Almas Taj. New adsorption-based biosensors for cancer detections and role of nanomedicine in its prognosis and inhibition. Essentials of cancer genomic, computational approaches and precision medicine. Tradução . Singapore: Springer, 2020. . Disponível em: https://doi.org/10.1007/978-981-15-1067-0_5. Acesso em: 17 maio 2024.
    • APA

      Bibi, N., Awan, I. T., & Awan, A. T. (2020). New adsorption-based biosensors for cancer detections and role of nanomedicine in its prognosis and inhibition. In Essentials of cancer genomic, computational approaches and precision medicine. Singapore: Springer. doi:10.1007/978-981-15-1067-0_5
    • NLM

      Bibi N, Awan IT, Awan AT. New adsorption-based biosensors for cancer detections and role of nanomedicine in its prognosis and inhibition [Internet]. In: Essentials of cancer genomic, computational approaches and precision medicine. Singapore: Springer; 2020. [citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-981-15-1067-0_5
    • Vancouver

      Bibi N, Awan IT, Awan AT. New adsorption-based biosensors for cancer detections and role of nanomedicine in its prognosis and inhibition [Internet]. In: Essentials of cancer genomic, computational approaches and precision medicine. Singapore: Springer; 2020. [citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-981-15-1067-0_5
  • Unidade: IFSC

    Subjects: SENSOR, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Functional nanomaterials: advances in gas sensing technologies. . Singapore: Springer. Disponível em: https://doi.org/10.1007/978-981-15-4810-9. Acesso em: 17 maio 2024. , 2020
    • APA

      Functional nanomaterials: advances in gas sensing technologies. (2020). Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer. doi:10.1007/978-981-15-4810-9
    • NLM

      Functional nanomaterials: advances in gas sensing technologies [Internet]. 2020 ;[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-981-15-4810-9
    • Vancouver

      Functional nanomaterials: advances in gas sensing technologies [Internet]. 2020 ;[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-981-15-4810-9
  • Source: Nanosensors for environmental applications. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, SENSOR, POLÍMEROS (MATERIAIS)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JOSHI, Nirav Kumar Jitendrabhai et al. Two-dimensional transition metal dichalcogenides for gas sensing applications. Nanosensors for environmental applications. Tradução . Cham: Springer, 2020. p. 302 . Disponível em: https://doi.org/10.1007/978-3-030-38101-1_4. Acesso em: 17 maio 2024.
    • APA

      Joshi, N. K. J., Braunger, M. L., Shimizu, F. M., Riul Jr., A., & Oliveira Junior, O. N. de. (2020). Two-dimensional transition metal dichalcogenides for gas sensing applications. In Nanosensors for environmental applications (p. 302 ). Cham: Springer. doi:10.1007/978-3-030-38101-1_4
    • NLM

      Joshi NKJ, Braunger ML, Shimizu FM, Riul Jr. A, Oliveira Junior ON de. Two-dimensional transition metal dichalcogenides for gas sensing applications [Internet]. In: Nanosensors for environmental applications. Cham: Springer; 2020. p. 302 .[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-3-030-38101-1_4
    • Vancouver

      Joshi NKJ, Braunger ML, Shimizu FM, Riul Jr. A, Oliveira Junior ON de. Two-dimensional transition metal dichalcogenides for gas sensing applications [Internet]. In: Nanosensors for environmental applications. Cham: Springer; 2020. p. 302 .[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-3-030-38101-1_4
  • Source: Functional nanomaterials: advances in gas sensing technologies. Unidade: IFSC

    Subjects: SENSOR, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MISHRA, Prashant Kumar et al. Hybridized graphitic carbon nitride (g-CN) as high performance VOCs sensor. Functional nanomaterials: advances in gas sensing technologies. Tradução . Singapore: Springer, 2020. p. 462 . Disponível em: https://doi.org/10.1007/978-981-15-4810-9_11. Acesso em: 17 maio 2024.
    • APA

      Mishra, P. K., Malik, R., Tomer, V. K., & Joshi, N. (2020). Hybridized graphitic carbon nitride (g-CN) as high performance VOCs sensor. In Functional nanomaterials: advances in gas sensing technologies (p. 462 ). Singapore: Springer. doi:10.1007/978-981-15-4810-9_11
    • NLM

      Mishra PK, Malik R, Tomer VK, Joshi N. Hybridized graphitic carbon nitride (g-CN) as high performance VOCs sensor [Internet]. In: Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer; 2020. p. 462 .[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-981-15-4810-9_11
    • Vancouver

      Mishra PK, Malik R, Tomer VK, Joshi N. Hybridized graphitic carbon nitride (g-CN) as high performance VOCs sensor [Internet]. In: Functional nanomaterials: advances in gas sensing technologies. Singapore: Springer; 2020. p. 462 .[citado 2024 maio 17 ] Available from: https://doi.org/10.1007/978-981-15-4810-9_11

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024